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Tuesday (Jan 26) Lecture Outline

• Self-Amplified Spontaneous Emission 10:00 – 10:30

• High-Gain FEL 10:30 – 11:00

• Break 11:00 – 11:10

• 1D Theory 11:10 – 11:40

• Ming-Xie Parametrization 11:40 – Noon

Time
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Self-Amplified Spontaneous Emission
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Peak Current and Beam Energy along the Bunch
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𝐸𝑏 − 𝐸0 (𝑀𝑒𝑉)

𝐼𝑝 (𝑘𝐴) 𝑄𝑏 ~ 160 𝑝𝐶

∆𝜏𝑏 ~ 40 𝑓𝑠

∆𝐸𝑠𝑙𝑖𝑐𝑒 ~ 2𝑀𝑒𝑉

𝐸0 ~ 10 𝐺𝑒𝑉 ∆𝐸𝑠𝑙𝑖𝑐𝑒
𝐸0

~ .02%



Number of photons vs. position along undulator
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• The spontaneous noise power and the 
number of photons at startup are given by

• In the exponential region, the slope of the 
semi-log plot is equal to 1/(gain length).

• Number of photons at saturation

Start-up

Exponential region

Saturation

𝑁𝑠𝑢 =
3

2

𝜌2𝐸𝑏Δ𝑡𝑏
ℎ

𝑃𝑠𝑢 =
3

2

𝜌2𝑃𝑏
𝑁𝜆

𝑁𝑠𝑎𝑡 =
𝜌𝐸𝑏𝑁𝑒
ℎ𝜈

𝑁𝑒 = Number of electrons in the bunch 



Transverse Coherence
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Incoherent Spontaneous Emission SASE in exponential region SASE at saturation



Start-up from noise

• The discrete nature of the electrons leads to 
random fluctuations in current.

• Taking the Fourier transform of current 
fluctuations yields “white noise” in the 
frequency domain, i.e. the bunching factor 
versus frequency is random. 

• The FEL amplifies a narrow portion of the 
“white noise” spectrum.  This portion of the 
spectrum grows to high power. The 
randomness of the initial bunching is still 
apparent in the final SASE spectrum.
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rms relative noise bandwidth
𝜎𝜔
𝜔 𝑛𝑜𝑖𝑠𝑒

= 2
𝜎𝛾

𝛾
𝑒−𝑏𝑒𝑎𝑚



Slippage Length & Coherence Length

In the time the electron traverses Nu undulator periods, the optical wave slips ahead of the electron 
Nu wavelengths, a distance known as the slippage length. The coherence length is the slippage 
length over one gain length.

In a SASE FEL, the radiation coherence extends over only one coherence length.  For bunch length 
longer than the coherence length, each coherence length is independent from the others.

8

𝑙𝑠𝑙𝑖𝑝𝑝𝑎𝑔𝑒 = 𝑁𝑢

𝑙𝑐 =
𝜆

4 𝜋𝜌

Coherence length, 𝑙𝑐

Undulator exit

Undulator entrance

𝑁𝑐 ≈
𝑐Δ𝑡𝑏
𝑙𝑐

The number of coherence length in a SASE pulse



SASE Time & Expanded Spectrum
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𝛿휀 ∙ ∆𝑡 = 1.8 𝑒𝑉 ∙ 𝑓𝑠
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Δ𝑠 = 𝑐Δ𝑡
Spectral spikes

𝛿휀

Time Domain Expanded Energy Spectrum

The radiation pulse width (electron bunch) is the Fourier conjugate of the individual 
spectral spike width.  The longer the overall electron bunch (Dt) in the time domain, the 
narrower the spectral spike width (de) in the energy (frequency) domain. 

Full pulse width



SASE Time & Spectral (Energy) Domains
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Temporal spikes
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𝛿𝑠 = 𝑐𝛿𝑡

Bunch coordinate (m)

Δ휀

Expanded Time Scale Overall Energy Spectrum

Δ휀 ∙ 𝛿𝑡 = 1.8 𝑒𝑉 ∙ 𝑓𝑠

In the expanded time scale, the temporal spike width is the Fourier conjugate of the full 
spectral (energy) width.  The shorter the temporal spikes (dt) in the time domain, the 
broader the overall spectral width (De) in the energy domain. 

Full spectral width



Relative Bandwidth of a SASE FEL
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Δ𝜔

𝜔
= 2 𝑙𝑛2

𝜎𝜔 𝑧

𝜔
Relative BW (FWHM)

Δ𝜔

𝜔
≈ 1.5𝜌

Dependence of relative rms BW on z

𝜎𝜔 𝑧

𝜔
= 3 2𝜌

𝐿𝑔0

𝑧

The relative spectral bandwidth of a SASE FEL is plotted as a function of undulator length. The 
relative BW decreases along the undulator and reaches the minimum BW just before saturation.

Number of 1D gain lengths to reach saturation

𝐿𝑠𝑎𝑡 = 21.8𝐿𝑔0

Minimum BW (FWHM)



First Observations of SASE FEL
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Infrared LANL (1997)
UCLA-LANL-RRK-SLAC (1998)

IR-Visible UCLA-BNL-SLAC-LLNL (2001)

VUV DESY (2000)
BNL (2003)

Microwave* LLNL (1986)

Soft X-ray DESY (2007)

Hard X-ray SLAC (2009)

Visible-UV ANL-MAXLab-BINP (2001)

* The LLNL SASE experiment was done in a waveguide, not free space



SASE Fluctuations
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Pulse energy fluctuations

Probability distribution of pulse energy

SASE pulse energy fluctuates significantly from 
pulse to pulse in the exponential growth regime, 
due to the stochastic nature of SASE shot noise. 

𝑈𝑝𝑢𝑙𝑠𝑒 = Average pulse energy

𝑢 =
𝑈𝑝𝑢𝑙𝑠𝑒

𝑈𝑝𝑢𝑙𝑠𝑒

Normalized pulse energy

𝑝𝑀 𝑢 𝑑𝑢 =
𝑀𝑀𝑢𝑀−1

Γ 𝑀
𝑒−𝑀𝑢𝑑𝑢

M = number of modes (spikes) in each SASE pulse
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High-Gain FEL
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L

E

SNL

FEL Amplification in a Long Undulator
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L = Lethargy

E = Exponential growth

S = Saturation

FEL power grows very slowly as the 
three “modes” (growing, decaying and 
oscillating solutions to the third order 
equation) interfere with one another

The growing mode wins and grows 
exponentially with z (except in the gaps 
between the undulators)

Power oscillates as a function of z due to synchrotron oscillations

NL = Nonlinear regime
FEL power reaches a maximum as electrons 
are trapped and bunched inside the bucket



Segmented Undulators in a FODO Lattice

16

Undulator Undulator Undulator Undulator Undulator

QF QF QFQD QD QD

xrms

yrms

rms radius (m)

Distance along undulator beamline (m)



FEL Animation

17Courtesy of Gabriel Marcus



𝜌 =
1

𝛾𝑟

𝐽𝐽 𝐾 λ𝑢
8𝜋𝜎

2
3 𝐼𝑝

𝐼𝐴

1
3
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Dimensionless FEL r  Parameter
The dimensionless FEL r parameter governs both the FEL gain and output power. There are a 
number of ways to write the expressions for r. Below is the correct expression.

gr resonant electron beam energy
JJ difference in Bessel functions (see next slide)
K undulator parameter
u undulator period
s rms electron beam radius
Ip peak electron beam current
IA Alfvén current (17.045 kA)

where 

𝛤 =
𝜋 𝐽𝐽 𝐾 2𝐼𝑝

4𝛾𝑟
3𝜆𝑢𝜎

2𝐼𝐴

1
3

𝐼𝐴 = 4𝜋휀𝜊
𝑚𝑒𝑐

3

𝑒

The textbook defines the gain parameter
and equate r to     on page 56.  Rewrite     
so it is consistent with the correct r.

𝛤
𝛤𝛤

𝜌 =
𝜆𝑢
4𝜋

𝛤
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The Bessel JJ Factor Explained
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The figure-8 motion of the electrons in a planar undulator 
modulates the electrons’ longitudinal velocity and reduces 
the electron-radiation wave interaction. The reduction is 
expressed in terms of the difference between the J0 and J1

Bessel functions of an argument x that depends on K.  This 
reduction affects planar, but not helical, undulators.

JJ is unity for helical undulators (no correction). For a 
planar undulator, JJ decreases to ~0.7 at very large K.

The textbook defines the modified undulator parameter, 𝐾
a product of K and the difference in Bessel functions. 𝐾 is 
to be used in calculations that involve the interaction 
strength. For wavelength calculations, one should use K.

𝜉 =
𝐾2

4 + 2𝐾2

𝐽𝐽 𝜉 = 𝐽0 𝜉 − 𝐽1 𝜉

𝐾 = 𝐾 ⋅ 𝐽𝐽

Plot of JJ versus K



Lethargy and Exponential Growth Regimes
FEL power stays relatively constant in the lethargy 
regime and then grows exponentially with z in the 
exponential regime with a characteristic “power gain 
length,” the length over which FEL power grows by 
one e-folding.

1D power gain length

Due to three-dimensional effects, the 3D power gain 
length LG is longer than the 1D power gain length. 
FEL power saturates in about 20 power gain lengths.

20

𝐿𝑔0 =
𝜆𝑢

4𝜋 3𝜌

𝑃(𝑧) =
𝑃0
9
𝑒
𝑧
𝐿𝐺

exponential regime



Power saturates when electrons at the bottom 
of the bucket begin to reabsorb the radiation.

Saturated power

Non-linear Regime and Saturation

21

Nonlinear regime occurs when electrons are 
bunched and a large fraction of electrons cross 
the separatrix and get trapped inside the bucket. 

𝑃𝑠𝑎𝑡 ≈ 𝜌
𝐸𝑏𝐼𝑝
𝑒

𝑃𝑏 =
𝐸𝑏𝐼𝑝
𝑒

Electron beam peak power

X-ray FEL pulse energy

𝑈𝑝 ≈
𝜌𝐸𝑏𝑄𝑏
𝑒

𝑄𝑏 = electron bunch charge (~ 10-10 C)

𝐸𝑏 = electron beam energy (~ 10 GeV)

𝐼𝑝 = electron beam peak current (~ 103 A)

𝜌 = FEL parameter (~ 10-3)



FEL Bucket & Synchrotron Oscillations

FEL bucket half-height

22

Radiation electric field amplitude

𝐸0 = 2𝑍0𝐼𝑟 =
2𝐼0
𝑐𝜖0

𝜂𝑚𝑎𝑥 =
𝑒𝐸0𝐾

𝑘𝑢𝑚𝑒𝑐
2

Synchrotron oscillation period

𝜂𝑚𝑎𝑥

𝐿𝑆 =
𝜆𝑢

2𝜂𝑚𝑎𝑥

𝑳𝑺



1D Theory of High-Gain FEL
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Some Important Basic Concepts
• FEL coupled first-order differential equations 

• Slowly Varying Amplitude (SVA) approximation

• Optical guiding

• Third-order differential equation

• Cubic dispersion equation & the three roots

24

Radiation field amplitude is a smooth and slowly varying function of z

The radiation beam is guided by the high-current electron beams in the exponential gain regime

For small h, combine the FEL coupled equations into a single third-order differential equation

For the resonant case and assuming solutions are of the form 
෨𝐸𝑥 = 𝐴𝑒𝛼𝑧 , solve the cubic equation and obtain three roots

Exponentially growing

Exponentially decaying

Oscillatory

𝜕2 𝐸

𝜕𝑧2
≪ 𝑘

𝜕 𝐸

𝜕𝑧

A Normalized radiation field amplitude

h Normalized electron energy modulation

b Electron bunching



Universal FEL Coupled First-Order Equations
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𝑑𝜓𝑛
𝑑𝜏

= ҧ𝜂𝑛

Electron microbunching grows with 
electron energy modulation

Energy modulation grows with radiation field 
amplitude correlated with electron phase

𝑑𝜂𝑛
𝑑𝜏

= −2Re 𝐴𝑒𝑖𝜓𝑛

Radiation field amplitude grows with electron microbunching

𝑑𝐴

𝑑𝑧
= −

1

𝑁


𝑛=1

𝑁

exp −𝑖𝜓𝑛



Normalized FEL Variables

26

𝜏 = 2𝑘𝑢𝜌𝑧

ҧ𝜂𝑛 =
𝜂𝑛
𝜌

Saturation electric field

Normalized radiation field amplitude

Normalized undulator coordinate

Normalized energy deviation from resonance

𝐴 =
𝐸

𝐸𝑠

𝐸𝑠 =
𝑍𝑜𝜌𝑃𝑏

𝜋𝜎𝑟
2

Saturated normalized SASE power 

𝐴 2 ≤ 1.6



Definitions of Important Variables
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𝜓𝑛 :  Phase of the nth electron with respect to the FEL resonant radiation wave

𝜂𝑛 :  Energy deviation of the nth electron with respect to the FEL resonant dimensionless energy

𝜂𝑛 =
𝛾𝑛 − 𝛾𝑟
𝛾𝑟

:  Resonant dimensionless energy𝛾𝑟

:  Initial energy detuning from the FEL resonant energyD

ǁ𝑗1 :  Transverse bunching current density at the fundamental wavelength

ǁ𝑗0 :  Initial electron beam DC current density (A/m2)

:  Undulator parameter corrected for figure-8 motion𝐾

𝛾𝑟 =
𝑘𝑟
2𝑘𝑢

1 +
𝐾2

2
𝑘𝑟 =

2𝜋

𝑟



FEL Coupled First-Order Equations
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𝑑𝜓𝑛
𝑑𝑧

= 2𝑘𝑢𝜂𝑛

Evolution of the nth electron phase Evolution of the nth electron energy deviation

𝑑𝜂𝑛
𝑑𝑧

= −
𝑒

𝑚0𝑐
2𝛾𝑅

Re
𝐾 ෨𝐸𝑥
2𝛾𝑅

− ෨𝐸𝑧 exp 𝑖𝜓𝑛

𝑑 ෨𝐸𝑥
𝑑𝑧

= −
𝜇0𝑐 𝐾

4𝛾𝑅
ǁ𝑗1

ǁ𝑗1 = 𝑗0
2𝜋

𝑁


𝑛=1

𝑁

exp −𝑖𝜓𝑛

First harmonic current density

Radiation field amplitude grows with 
the first harmonic current density

Radiation-electron interaction

Electron-electron interaction (space charge)

Space charge effects are negligible for FELs 
operating in the Compton regime (e.g., X-ray 
FELs). Space charge cannot be ignored for FELs 
operating in the Raman regime (e.g., THz FELs).



Evolution of DC and AC Current Density
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ǁ𝑗1 = 𝑗0
2

𝑁


𝑛=1

𝑁

exp −𝑖𝜓𝑛
where N is the number of electrons in one 
wavelength. The first harmonic AC current is 
proportional to the correlation of N electrons.

Consider the current density with a DC component 
and a small first harmonic modulations (AC current).

ǁ𝑗𝑧 𝜓, 𝑧 = 𝑗0 + ǁ𝑗1 𝑧 𝑒𝑖 𝑘𝑢+𝑘𝑟 𝑧−𝜔𝑟𝑡

The initial DC current density is proportional 
to the electron volume density 

𝑗0 = −𝑛𝑒𝑒𝑐

𝑛𝑒 =
𝑁

𝐴𝑏𝜆𝑟

ǁ𝑗1 = 𝑗0
2𝜋

𝑁
𝑐1

The AC current amplitude is proportional to the initial DC 
current and the first harmonic Fourier coefficient.

Initial DC current 



Evolution of Harmonic Current Density

30

First harmonic current density is 
proportional to the electron bunching

𝑛𝑒 =
𝑁

𝐴𝑏𝜆𝑟

Initial DC current density

𝑗0 = −𝑛𝑒𝑒𝑐

ǁ𝑗1 = 𝑗0
2𝜋

𝑁


𝑛=1

𝑁

exp −𝑖𝜓𝑛
𝑗0 = −𝑒𝑐

𝑘𝑟
𝐴𝑏

𝑐0
2 𝑗1 = −𝑒𝑐

𝑘𝑟
𝐴𝑏

𝑐1



Phase Space Distribution Function, F
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𝐹 𝜓, 𝜂, 𝑧 = 𝐹0 𝜂 + 𝑅𝑒 ෨𝐹1 𝜂, 𝑧 ∙ 𝑒𝑖𝜓

Consider a 2D phase-space density function with small 1st harmonic modulations.

Assume F0 is a Gaussian function of energy with small energy spread.

𝐹0 𝜂 =
1

2𝜋𝜎𝜂
𝑒
−

𝜂−𝜂0
2

2𝜎𝜂
2

The 1st harmonic current is related to 1st harmonic phase-space density

ǁ𝑗1 = 𝑗0න
−𝛿

𝛿

෨𝐹1 𝜂, 𝑧 𝑑𝜂



Liouville’s Theorem & Vlasov Equation
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Liouville’s equation governs the evolution of phase-space distribution with the independent 
coordinate. According to Liouville’s Theorem, in the absence of dissipative force, the phase-space 
volume occupied by an ensemble of particles is conserved along the trajectory.

Generalized continuity equation (also known as Vlasov equation).

𝑑𝐹

𝑑𝑧
=
𝜕𝐹

𝜕𝑧
+
𝜕𝐹

𝜕𝜓

𝑑𝜓

𝑑𝑧
+
𝜕𝐹

𝜕𝜂

𝑑𝜂

𝑑𝑧
= 0

Rewrite the continuity equation for the 1st harmonic distribution function

𝜕 ෨𝐹1
𝜕𝑧

+ 𝑖2𝑘𝑢 ෨𝐹1 −
𝑒

𝑚0𝑐
2𝛾𝑅

𝑑𝐹0
𝑑𝜂

𝐾 ෨𝐸𝑥
2𝛾𝑅

+ ෨𝐸𝑧 = 0



Longitudinal Space Charge Field
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Longitudinal space charge force is the repulsive force felt by an electron due to the presence of other 
electrons. This effect is important for FELs operating in the Raman regime such as THz FELs. It is 
negligible for FELs operating in the Compton regime, e.g., all X-ray FELs.

In the text book, the longitudinal space charge electric field is expressed as the first derivative of the 
transverse electric field with respect to z.

෨𝐸𝑧 = 𝑖
4𝛾𝑟𝑐

𝜔𝑟
𝐾

𝑑 ෨𝐸𝑥
𝑑𝑧

Rewrite the continuity equation for the 1st harmonic distribution function

𝜕 ෨𝐹1
𝜕𝑧

+ 𝑖2𝑘𝑢 ෨𝐹1 =
𝑒

𝑚0𝑐
2𝛾𝑅

𝐾 ෨𝐸𝑥
2𝛾𝑅

+ 𝑖
4𝛾𝑟𝑐

𝜔𝑟
𝐾

𝑑 ෨𝐸𝑥
𝑑𝑧

𝑑𝐹0
𝑑𝜂



Slowly Varying Amplitude Approximation

34

෨𝐸(𝑧, 𝑡) = ෨𝐸𝑥 𝑧 𝑒𝑖 𝑘𝑧−𝜔𝑡

Consider the following trial solution for an EM wave with complex amplitude that depends only on z

Insert the above trial solution into the wave equation and expand

Treat the radiation as a 1D (no optical diffraction) wave equation driven by a complex transverse 
electron current along the x direction

𝜕2

𝜕𝑧2
−

1

𝑐2
𝜕2

𝜕𝑡2
෨𝐸(𝑧, 𝑡) = 𝜇0

𝜕 ǁ𝑗𝑥
𝜕𝑡

−𝑘2 ෨𝐸𝑥 𝑧 + 2𝑖𝑘
𝑑 ෨𝐸𝑥 𝑧

𝑑𝑧
+
𝑑2 ෨𝐸𝑥 𝑧

𝑑𝑧2
+
𝜔2

𝑐2
෨𝐸𝑥 𝑧 𝑒𝑖 𝑘𝑧−𝜔𝑡 = 𝜇0

𝜕 ǁ𝑗𝑥
𝜕𝑡

Applying the SVA approximation, i.e., the second derivative is much smaller than the first derivative

2𝑖𝑘
𝑑 ෨𝐸𝑥 𝑧

𝑑𝑧
𝑒𝑖 𝑘𝑧−𝜔𝑡 = 𝜇0

𝜕 ǁ𝑗𝑥
𝜕𝑡



FEL Integro-differential Equation
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Integrate the continuity equation with respect to s, from s = 0 to s = z

𝑑 ෨𝐸𝑥 𝑧

𝑑𝑧
=−

𝜇0𝑐 𝐾

4𝛾𝑟
ǁ𝑗1= 𝑗0න

−𝛿

𝛿

෨𝐹1 𝜂, 𝑧 𝑑𝜂

෨𝐹1 𝜂, 𝑧 =
𝑒

𝑚𝑒𝑐
2𝛾𝑟

න
0

𝑧 𝐾 ෨𝐸𝑥
2𝛾𝑅

+ 𝑖
4𝛾𝑟𝑐

𝜔𝑟
𝐾

𝑑 ෨𝐸𝑥
𝑑𝑧

𝑑𝐹0
𝑑𝜂

𝑒−𝑖2𝑘𝑢𝜂∙ 𝑧−𝑠 𝑑𝑠

Integro-differential equation

𝑑 ෨𝐸𝑥 𝑧

𝑑𝑧
= 𝑖𝑘𝑢

𝜇0 𝐾𝑛𝑒𝑒
2

𝑚𝑒𝛾𝑟
2 න

0

𝑧 𝐾 ෨𝐸𝑥
2𝛾𝑅

+ 𝑖
4𝛾𝑟𝑐

𝜔𝑟
𝐾

𝑑 ෨𝐸𝑥
𝑑𝑧

ℎ 𝑧 − 𝑠 𝑑𝑠

For a mono-energetic electron beam with 
initial energy detuning ℎ 𝑧 − 𝑠 = 𝑧 − 𝑠 𝑒

−𝑖2𝑘𝑢
Δ
𝛾𝑟

𝑧−𝑠
Δ = 𝛾0 − 𝛾𝑟



Third-Order Equation

36

෨𝐸𝑥
‴

Γ3
+ 2𝑖

𝜂

𝜌

෨𝐸𝑥
″

Γ2
+

𝑘𝑝
2

Γ2
−

𝜂

𝜌

2 ෨𝐸𝑥
′

Γ
− 𝑖 ෨𝐸𝑥 = 0

෨𝐸𝑥
″ 𝑧 =

𝑑2 ෨𝐸𝑥 𝑧

𝑑𝑧2

෨𝐸𝑥
‴ 𝑧 =

𝑑3 ෨𝐸𝑥 𝑧

𝑑𝑧3

෨𝐸𝑥
′ 𝑧 =

𝑑 ෨𝐸𝑥 𝑧

𝑑𝑧

Gain parameter

𝜌 =
𝛤

2𝑘𝑢

Detuning

Prime denotes full derivatives with respect to z

𝛤 =
𝜋𝐾2𝐼𝑝

4𝛾𝑟
3𝜆𝑢𝜎

2𝐼𝐴

1
3

Plasma wavenumber

෨𝐸𝑥
‴

Γ3
− 𝑖 ෨𝐸𝑥 = 0

Special case: 
1. Beam energy does not deviate significantly 

from the resonant energy
2. X-ray FEL (Compton regime)
The second and third terms vanish for this case, 
and the third order equation reduces to



Cubic Equation & the Three Roots
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Applying the resonant condition to an FEL operating 
in the Compton regime, and assuming solution of the 
form                             , we obtain the cubic equation 

The three roots of the cubic equation:

Exponentially growing mode

Exponentially decaying mode

Oscillatory mode

𝛼3 = 𝑖Γ3

Im

Re

-1

3

2

-3
2

m2

m1

m3

෨𝐸𝑥 𝑧 = 𝐴eα𝑧

𝛼1 = 𝑖𝜇1Γ =
𝑖 + 3

2
Γ

1
2

𝛼2 = 𝑖𝜇2Γ =
𝑖 − 3

2
Γ

𝛼3 = 𝑖𝜇3Γ = −𝑖Γ

Γ = 2𝑘𝑢𝜌

Gain parameter



initial energy detuning

where c1, c2 and c3 can be obtained for different initial conditions. Taking the derivatives of the eigen-
functions and expressing them in terms of the A matrix, we arrive at the initial conditions given below

General Solutions & the A Matrix
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Write the solution as a linear combination of the eigen-functions 𝑉𝑗 = 𝑒𝛼𝑗 𝑧

෨𝐸𝑥 𝑧 = 𝑐1𝑉1 + 𝑐2𝑉2+ 𝑐3𝑉3

𝜜 =

1 1 1
𝛼1 𝛼2 𝛼3
𝛼1
2 𝛼2

2 𝛼3
2

෨𝐸𝑥 0

෨𝐸𝑥
′ 0

෨𝐸𝑥
″ 0

= 𝜜 ∙

𝑐1

𝑐2

𝑐3

initial radiation electric field

initial bunching



Finding the General Solution Coefficients
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𝑐1
𝑐2
𝑐3

= 𝜜−1 ∙

෨𝐸𝑥 0
෨𝐸𝑥
′ 0
෨𝐸𝑥
″ 0

The general solution can be expressed as a linear combination of eigenfunctions

𝑉𝑗 = 𝑒𝛼𝑗 𝑧

෨𝐸𝑥 𝑧 = 𝑐1𝑉1 + 𝑐2𝑉2+ 𝑐3𝑉3

where the eigenfunctions are

The coefficients of the general solution can be calculated by applying the inverse A matrix to the 
initial condition vector.



High-gain FEL Seeded with Optical Power
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෨𝐸𝑥 𝑧 =
෨𝐸0
3
𝑒

3Γ
2 𝑧

෨𝐸𝑥 𝑧 =
𝐸0
3
⋅ exp

𝑖 + 3 Γ

2
z + exp

𝑖 − 3 Γ

2
z + exp −𝑖Γz

෨𝐸𝑥 0
෨𝐸𝑥
′ 0
෨𝐸𝑥
″ 0

=
෨𝐸0
0
0

Seeded FEL initial condition involves injecting a 
coherent electric field (a coherent seed) and an 
initially unbunched (no density modulation) 
electron beam at the undulator entrance

In the lethargy region (~2 Lg0) the three roots 
interfere with one another and the radiation 
power does not grow or grows slowly with z

lethargy 
region

exponential 
region



SASE FEL Seeded with Start-up Noise
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෨𝐸𝑥 0
෨𝐸𝑥
′ 0
෨𝐸𝑥
″ 0

=
0
−1
0

𝜇0𝑐 𝐾

4𝛾𝑟
ǁ𝑗1 0

The solid (red) line corresponds to power for a 
constant bandwidth and the dash (blue) line 
corresponds to power for a variable bandwidth 
(recall the SASE BW varies with z in Lecture 1).

SASE FEL initial condition involves a beam of 
monoenergetic electrons with start-up shot noise 
due to the electron’s discrete nature as the seed.

Equivalent current density

ǁ𝑗1 0 =
1

𝐴𝑏

𝑒𝐼0
𝜋
Δ𝜔



Start-up Noise
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We have been describing electron current as a smooth function 
𝐼(𝑡).  A more accurate description of current, which accounts for 
the discrete location of electrons, is a sum of Dirac delta functions:  

𝐼(𝑡) = 𝑒

𝑗=1

𝑁

𝛿 𝑡 − 𝑡𝑗

Taking the Fourier Transform of 𝐼(𝑡):

𝑖𝑇 𝜔 = න

−∞

+∞

𝑒

𝑗=1

𝑁

𝛿 𝑡 − 𝑡𝑗 exp 𝑖𝜔𝑡 𝑑𝑡 = 𝑒

𝑗=1

𝑁

exp 𝑖𝜔𝑡𝑗

𝑆 𝜔 =
1

𝜋𝑇
𝑖𝑇 𝜔 2

𝑆 𝜔 =
𝑒2

𝜋𝑇


𝑗=1

𝑁

exp 𝑖𝜔𝑡𝑗 − 𝑖𝜔𝑡𝑗 +

𝑗=1

𝑁



𝑘≠𝑗

𝑁

exp 𝑖𝜔 𝑡𝑗 − 𝑡𝑘



Estimate of Start-up Noise
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𝐼𝑟𝑚𝑠
2 = 𝑆 𝜔 Δ𝜔 =

𝑒𝐼0
𝜋
Δ𝜔

Total AC current from shot noise that is in the FEL resonant bandwidth

The start-up noise relative bandwidth is approximately twice the relative energy spread.

The total starting current density for a SASE FEL is:

ǁ𝑗1 =
𝐼𝑟𝑚𝑠
2

𝐴𝑏
=

1

𝐴𝑏

𝑒𝐼0Δ𝜔

𝜋

∆𝜔 0 ≈ 2
𝜎𝛾
𝛾
𝜔

Total AC current from shot noise that is in the FEL resonant bandwidth

𝑆 𝜔 =
𝑒2𝑁

𝜋𝑇



FEL Seeded with Periodically Bunched Beam
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෨𝐸𝑥 0
෨𝐸𝑥
′ 0
෨𝐸𝑥
″ 0

=
0
−1

𝑖2𝑘𝑢𝜂

𝜇0𝑐 𝐾

4𝛾𝑟
ǁ𝑗1 0

Initially, the electron beam has density modulations 
with a period equal to the radiation wavelength. 
The radiation power starts out zero, but rises to the 
equivalent seed power as given below

Another initial condition is when the electrons are 
periodically bunched before injected into the 
undulator, with zero initial radiation power.

𝑃𝑒𝑞 0 ≈ 𝜌𝑃𝑏𝑏
2 0



Three-dimensional Effects
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Beam Optics (Twiss) Functions
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𝑥′

𝑥

Beta function* (beam size)

Gamma function (beam divergence)

Alpha function (phase-space angle)

𝛽𝑥 =
𝑥2

휀𝑥

𝛾𝑥 =
𝑥′2

휀𝑥

𝛾𝑥𝑥
2 + 2𝛼𝑥𝑥𝑥

′ + 𝛽𝑥𝑥
′2 = 휀𝑥

𝛼𝑥 =
− 𝑥𝑥′

휀𝑥
= −

1

2

𝑑𝛽𝑥
𝑑𝑧

Note       is the Twiss beta function, not 
x velocity relative to the speed of light.

𝛽𝑥*

𝛽𝑥휀𝑥

𝛾𝑥휀𝑥

𝜑

𝑡𝑎𝑛2𝜑 =
2𝛼

𝛾 − 𝛽



Strong Focusing in an Undulator FODO
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𝜎𝑥′ = 휀𝑥
1 + 𝛼𝑥

2

𝛽𝑥

In a FODO lattice, the electron beam radii in x and y oscillate between a maximum and minimum 
values set by the b functions and the un-normalized emittance in x and y. We consider the case 
where 휀𝑥 = 휀𝑦 and 𝛽𝑥 > 𝛽𝑦

𝜎𝑚𝑎𝑥 = 𝛽𝑥휀𝑥

𝜎𝑚𝑖𝑛 = 𝛽𝑦휀𝑦

= 𝜎𝑦′= 휀𝑦
1 + 𝛼𝑦

2

𝛽𝑦
Electron beam rms angle

Undulator Undulator Undulator Undulator Undulator

QF QF QFQD QD QD

Undulator

QF

𝜎𝑥

𝜎𝑦



Optical Diffraction
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The rms radius of the radiation beam is determined by two competing effects: optical guiding (beam 

focusing) and diffraction (beam expanding). The minimum radiation radius is approximately the larger 

of the x and y electron beam radii in the FODO lattice.

𝜎𝑟 ≥ max(𝜎𝑥,𝑦)

The Rayleigh length is chosen to minimize the effect of optical diffraction.

𝜎𝑟′ =
𝜎𝑟
𝑧𝑅

𝑧𝑅 =
4𝜋𝜎𝑟

2

𝜆

To minimize diffraction effect, the radiation Rayleigh range must be longer than the 1D gain length

𝑧𝑅 > 𝐿1𝐷
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0.00E+00

5.00E-06

1.00E-05

1.50E-05

2.00E-05

2.50E-05

3.00E-05

3.50E-05

4.00E-05

4.50E-05

0.0 6.7 13.3 20.0 26.6 33.3 39.9 46.6 53.2 59.9 66.6 73.2

xrms yrms rad_size

Optical Guiding in an Undulator FODO Lattice

Beam radius 
(m) 

Distance along the undulator (m) 

rms radiation 
beam radius for 

a single slice

x rms radius (m) 

y rms radius (m) 

No optical guiding 
in lethargy region

Optical guiding in exponential growth region

No optical guiding 
after FEL saturates



Focusing b and Rayleigh Range 
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For the electron beam to efficiently transfer its energy to the radiation beam, the electron beam
un-normalized emittance must be smaller than the photon beam emittance, i.e.,            

This stringent condition is not satisfied in most hard X-ray FELs. The 3D effect due to emittance 
shows up as large angles in the electron beam as it traverses the FODO lattice. To minimize this 
effect, the FODO lattice is designed with focusing b larger than the 1D gain length, i.e., 𝐿1𝐷

𝛽𝑎𝑣𝑒
< 1

4𝜋휀𝑢
𝜆𝑟

≤ 1

𝜎𝑚𝑎𝑥

𝑧𝑅

𝜎𝑟 =
𝜆

4𝜋
𝑧𝑅 1 +

𝑧2

𝑧𝑅
2𝜎𝑚𝑎𝑥 = 휀𝑥,𝑦𝛽𝑚𝑎𝑥 1 +

𝑧2

𝛽𝑚𝑎𝑥
2

𝛽𝑎𝑣𝑒~ 𝑧𝑅

𝜎𝑟
𝜎𝑦



Optimum Focusing b Function 
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𝛽𝑎𝑣𝑒~
1
2 𝛽𝑚𝑎𝑥 + 𝛽𝑚𝑖𝑛

Too short b functions increase the angular modulations, thus increase 
the electron beam’s effective energy spread, resulting in lower power. 
Too long b functions reduce the current density and also lead to lower 
power. Note the reduction is gradual beyond the optimum b function.



Electron Beam Energy Spread
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𝜎𝛾

𝛾
≤ 𝜌

Electrons must maintain the same axial velocity during the coherence length 𝑙𝑐

𝜎𝛾
𝛾
≤

1

4𝜋𝑁𝐺

𝑙𝑐 ≈ 𝑁𝐺𝜆

𝑁𝐺 ≈
1

4𝜋𝜌

𝑙𝑐

The initial relative beam energy spread must be less than r

SASE coherence length is 
approximately the slippage 
length over the 1D gain length 



Ming-Xie parameters Conditions for 1D Theory

Diffraction

Emittance

Energy spread

Ming-Xie Parameterization – Part 1
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𝐿1𝐷 ≤ 𝑧𝑅 𝜂𝑑 =
𝐿1𝐷
𝑧𝑅

𝐿1𝐷
𝛽𝑎𝑣𝑒

4𝜋휀𝑢
𝜆𝑟

≤ 1 𝜂 =
𝐿1𝐷
𝛽𝑎𝑣𝑒

4𝜋휀𝑢
𝜆𝑟

𝜎𝛾

𝛾
≤

1

4𝜋𝑁𝐺
𝜂𝛾 =

4𝜋𝐿1𝐷
𝜆𝑢

𝜎𝛾
𝛾

𝛽𝑎𝑣𝑒 > 𝐿1𝐷

𝜂𝑑 < 1

𝜂 < 1

𝜂𝛾 < 1

𝑧𝑅 > 𝐿1𝐷

𝜎𝛾
𝛾
< 𝜌



Ming-Xie Parameterization – Part 2
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Λ 𝜂𝑑 , 𝜂 , 𝜂𝛾 = 𝑎1𝜂𝑑
𝑎2 + 𝑎3𝜂

𝑎4 + 𝑎5𝜂𝛾
𝑎6

+𝑎7𝜂
𝑎8𝜂𝛾

𝑎9 + 𝑎10𝜂𝑑
𝑎11𝜂𝛾

𝑎12 + 𝑎13𝜂𝑑
𝑎14𝜂 𝑎15 + 𝑎16𝜂𝑑

𝑎17𝜂 𝑎18𝜂𝛾
𝑎19

𝐿𝐺,3𝐷 = 𝐿𝑔0 1 + Λ

3D effects increase the power gain length by a factor 𝐹 𝜂𝑑 , 𝜂 , 𝜂𝛾 = 1 + Λ 𝜂𝑑 , 𝜂 , 𝜂𝛾

a1=0.45 a2=0.57 a3=0.55 a4=1.6

a5=3 a6=2 a7=0.35 a8=2.9

a9=2.4 a10=51 a11=0.95 a12=3

a13=5.4 a14=0.7 a15=1.9 a16=1140

a17=2.2 a18=2.9 a19=3.2

3D Power gain length

3D Saturated power 𝑃𝑠𝑎𝑡,3𝐷 =
𝜌𝑃𝑏

1 + Λ 2



Comparing MX, Genesis & 1D FEL with LCLS Data
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Ming-Xie Genesis LCLS Data

3D effect, Λ 0.21

Power gain length 2.4 m 3.6 m 3.5 m

Saturated power 20 GW 20 GW 15 GW

Parameters Symbol Value

Beam energy 𝐸𝑏 13.6 GeV

Peak current 𝐼𝑝 3.0 kA

Slice emittance 휀𝑛,𝑟𝑚𝑠 0.4 mm

rms energy spread 𝜎𝛾,𝑟𝑚𝑠/𝛾 0.01%

FEL wavelength  1.5 Å

FEL parameter r 7 x 10-4

1D gain length 𝐿𝑔0 2.0 m

1D Saturated power 𝑃𝑠𝑎𝑡 28 GW

LCLS experimental data from “First lasing and operation of 
an angstrom-wavelength free-electron laser” P. Emma et al., 
Nature Photonics 4, 641–647(2010)



Summary of FEL Radiation Properties
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• SASE starts from noise, grows exponentially along a very undulator and saturates at peak power 
of 10s of GW.  The SASE x-ray pulses only have partial temporal coherence and consist of multiple 
sub-femtosecond spikes, each with its own coherence length. The SASE x-ray FEL output has 
significant pulse-to-pulse energy and spectral fluctuations.

• The 1D FEL theory is based on interaction between a mono-energetic electron beam and a 
paraxial radiation beam under SVA approximation. This interaction is described by three coupled 
equations involving the radiation field amplitude, electron bunching and energy detuning.

• For small energy detuning, we combine the three first-order equations into a single third-order 
equation that gives rise to the cubic equation with three roots. One of these roots corresponds to 
the mode that grows exponentially along z with a characteristic 1D gain length.

• The effects of diffraction, emittance and energy spread can be analyzed using the Ming-Xie
parametrization approach that provides estimates of the 3D gain length and saturated power.


